首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57525篇
  免费   897篇
  国内免费   466篇
测绘学   1508篇
大气科学   4159篇
地球物理   10821篇
地质学   19883篇
海洋学   5282篇
天文学   13379篇
综合类   170篇
自然地理   3686篇
  2022年   915篇
  2021年   1336篇
  2020年   1311篇
  2019年   1371篇
  2018年   1274篇
  2017年   1052篇
  2016年   1138篇
  2015年   788篇
  2014年   1202篇
  2013年   2562篇
  2012年   1187篇
  2011年   1751篇
  2010年   1616篇
  2009年   2163篇
  2008年   1864篇
  2007年   1885篇
  2006年   1777篇
  2005年   1634篇
  2004年   1752篇
  2003年   1701篇
  2002年   1675篇
  2001年   1481篇
  2000年   1288篇
  1999年   1234篇
  1998年   1187篇
  1997年   1220篇
  1996年   837篇
  1995年   867篇
  1994年   839篇
  1993年   760篇
  1992年   751篇
  1991年   719篇
  1990年   810篇
  1989年   714篇
  1988年   678篇
  1987年   768篇
  1986年   700篇
  1985年   858篇
  1984年   981篇
  1983年   965篇
  1982年   860篇
  1981年   848篇
  1980年   748篇
  1979年   705篇
  1978年   708篇
  1977年   645篇
  1976年   601篇
  1975年   536篇
  1974年   652篇
  1973年   615篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
High‐strain zones are potential pathways of melt migration through the crust. However, the identification of melt‐present high‐strain deformation is commonly limited to cases where the interpreted volume of melt “frozen” within the high‐strain zone is high (>10%). In this contribution, we examine high‐strain zones in the Pembroke Granulite, an otherwise low‐strain outcrop of volcanic arc lower crust exposed in Fiordland, New Zealand. These high‐strain zones display compositional layering, flaser‐shaped mineral grains, and closely spaced foliation planes indicative of high‐strain deformation. Asymmetric leucosome surrounding peritectic garnet grains suggest deformation was synchronous with minor amounts of in situ partial melting. High‐strain zones lack typical mylonite microstructures and instead display typical equilibrium microstructures, such as straight grain boundaries, 120° triple junctions, and subhedral grain shapes. We identify five key microstructures indicative of the former presence of melt within the high‐strain zones: (a) small dihedral angles of interstitial phases; (b) elongate interstitial grains; (c) small aggregates of quartz grains with xenomorphic plagioclase grains connected in three dimensions; (d) fine‐grained, K‐feldspar bearing, multiphase aggregates with or without augite rims; and (e) mm‐ to cm‐scale felsic dykelets. Preservation of key microstructures indicates that deformation ceased as conditions crossed the solidus, breaking the positive feedback loop between deformation and the presence of melt. We propose that microstructures indicative of the former presence of melt, such as the five identified above, may be used as a tool for recognising rocks formed during melt‐present high‐strain deformation where low (<5%) volumes of leucosome are “frozen” within the high‐strain zone.  相似文献   
82.
Side channel construction is a common intervention applied to increase a river's conveyance capacity and to increase its ecological value. Past modelling efforts suggest two mechanisms affecting the morphodynamic change of a side channel: (1) a difference in channel slope between the side channel and the main channel and (2) bend flow just upstream of the bifurcation. The objective of this paper was to assess the conditions under which side channels generally aggrade or degrade and to assess the characteristic timescales of the associated morphological change. We use a one‐dimensional bifurcation model to predict the development of side channel systems and the characteristic timescale for a wide range of conditions. We then compare these results to multitemporal aerial images of four side channel systems. We consider the following mechanisms at the bifurcation to be important for side channel development: sediment diversion due to the bifurcation angle, sediment diversion due to the transverse bed slope, partitioning of suspended load, mixed sediment processes such as sorting at the bifurcation, bank erosion, deposition due to vegetation, and floodplain sedimentation. There are limitations to using a one‐dimensional numerical model as it can only account for these mechanisms in a parametrized manner, but the model reproduces general behaviour of the natural side channels until floodplain‐forming processes become important. The main result is a set of stability diagrams with key model parameters that can be used to assess the development of a side channel system and the associated timescale, which will aid in the future design and maintenance of side channel systems. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
83.
Channel bank failure, and collapses of shoal margins and beaches due to flow slides, have been recorded in Dutch estuaries for the past 200 years but have hardly been recognized elsewhere. Current predictions lack forecasting capabilities, because they were validated and calibrated for historic data of cross‐sections in specific systems, allowing local hindcast rather than location and probability forecasting. The objectives of this study were to investigate where on shoal margins collapses typically occur and what shoal margin collapse geometries and volumes are, such that we can predict their occurrence. We identified shoal margin collapses, generally completely submerged, from bathymetry data by analyzing digital elevation models of difference of the Western Scheldt for the period 1959–2015. We used the bathymetry data to determine the conditions for occurrence, specifically to obtain slope height and angle, and applied these variables in a shoal margin collapse predictor. We found 299 collapses along 300 km of shoal margin boundaries over 56 years, meaning that more than five collapses occur on average per year. The average shoal margin collapse body is well approximated by a 1/3 ellipsoid shape, covers on average an area of 34 000 m2 and has an average volume of 100 000 m3. Shoal margin collapses occur mainly at locations where shoals take up a proportionally larger area than average in the cross‐section of the entire estuary, and occur most frequently where lateral shoal margin displacement is low. A receiver operating characteristic curve shows that the forecasting method predicts the shoal margin collapse location well. We conclude that the locations of the shoal margin collapses are well predicted by the variation in conditions of the relative slope height and angle within the Western Scheldt, and likely locations are at laterally relatively stable shoal margins. This provides hypotheses aiding the recognition of these features in sandy estuaries worldwide. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
84.
Geomagnetism and Aeronomy - The article analyzes the existing theoretical models of the formation of the solar system and the early physical conditions on Earth from the point of view of the...  相似文献   
85.
Geomagnetism and Aeronomy - It is shown that a source generating a slowly varying or quiet component of radio emission from ultracool stars such as the brown dwarf TVLM 513-46546 can be the...  相似文献   
86.
The mathematical model for simulating deformations of river channels composed of heterogeneous alluvium has been developed. The combination of shallow water equations and a three-layer model is used to describe the fluid flow and non-uniform sediment transport in bed (layer II) and suspended (layer III) loads. Changes in the fractional composition of unerodible bottom sediments (layer I) are also considered. The algorithm provides mass conservation for each fraction. The comparison of calculations results and experimental data (hydraulic washing of a desilting basin from sediments and armoring processes in heterogeneous soils) confirms the operability of the model. The model is applied to calculate the silting and hydraulic washes of the reservoir of a hydroelectric power station on a mountain river.  相似文献   
87.
The mineralogy and geochemistry of Ceres, as constrained by Dawn's instruments, are broadly consistent with a carbonaceous chondrite (CM/CI) bulk composition. Differences explainable by Ceres’s more advanced alteration include the formation of Mg‐rich serpentine and ammoniated clay; a greater proportion of carbonate and lesser organic matter; amounts of magnetite, sulfide, and carbon that could act as spectral darkening agents; and partial fractionation of water ice and silicates in the interior and regolith. Ceres is not spectrally unique, but is similar to a few other C‐class asteroids, which may also have suffered extensive alteration. All these bodies are among the largest carbonaceous chondrite asteroids, and they orbit in the same part of the Main Belt. Thus, the degree of alteration is apparently related to the size of the body. Although the ammonia now incorporated into clay likely condensed in the outer nebula, we cannot presently determine whether Ceres itself formed in the outer solar system and migrated inward or was assembled within the Main Belt, along with other carbonaceous chondrite bodies.  相似文献   
88.
Izvestiya, Atmospheric and Oceanic Physics - A new technique has been developed to obtain the total ozone content (TOC) under cloudy conditions from the spectra of outgoing thermal IR radiation...  相似文献   
89.
Geomagnetism and Aeronomy - The results of the reconstruction of Wolf numbers from the 11th century until the middle of the 19th century A.D. based on radiocarbon data are presented. This time span...  相似文献   
90.
A simple and fast treatment of hydrogeologic features with irregularly shaped boundaries in two‐dimensional analytic element groundwater flow models is presented. The star domain shapes of the features are restricted to closed shapes represented as smooth and continuous single‐valued functions of distance from a focus point, . The element can be used to treat a variety of boundary and continuity conditions, including those of irregularly shaped lakes or heterogeneities in hydraulic conductivity. The new element is demonstrated via some simple illustrative test cases and shown to be efficient, accurate, and much simpler to implement than existing solutions for irregular shapes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号